US 2006/0031815 Al

when they add/declare new scheme instances). Implement-
ers can thus model device differences either via distinct facet
schemes (i.e., by choosing to introduce distinct schemes to
the schema) or via distinet parameter/property values (i.e.,
by changing logical description values for an existing
scheme instance).

Physical Schema

[0080] Thus far, we have described the use of a declara-
tive, logical description of a peripheral hardware environ-
ment. A corresponding physical description (of the periph-
eral hardware environment) is also needed. The physical
description is paired with a corresponding logical descrip-
tion to complete a description.

[0081] Returning to the running power supply example,
suppose that there is a specific type of power supply in use.
To illustrate the variety of physical descriptions often
required, suppose that this power supply is controlled
through certain general purpose input/output pins (which are
available on the given host chip/hardware). Further suppose
that there is a second power supply dedicated to some
always-on embedded manageability sub-system. Alterna-
tively, a third power supply instance might be an uninter-
ruptible power supply (e.g., driven by batteries).

[0082] Although this second power supply instance might
be direct wired to the host (operating) platform, like the first
one, it might be quite different. At the logical level, the
second power supply might not handle any system (board)
interrupts at all. It might have no knowledge of front-panel
button push events, it might be connected to the host/
operational platform using different wires/pins, and it might
use different electrical signal pulse widths (and/or triggering
conventions).

[0083] The single, fixed software/firmware image accord-
ing to embodiments of the present invention can handle
these physical configuration differences just as easily as it
does any other differences within a given scheme. As with
the scheme differences (discussed above), the present inven-
tion obviates any need to change the software/firmware
image for these physical/wiring level differences. The
present invention can even handle changing hardware envi-
ronments (e.g., hot-swap) without any software/firmware
image changes.

[0084] To deal with some of the Power Supply physical
aspects stipulated above, the present invention associates
each instance of a logical peripheral device (e.g., each power
supply) with various features on (or accessed through) the
operational/host hardware (e.g., a microcontroller core
based Application Specific Integrated Circuit—ASIC).
Some peripheral schemes, like the one for power supply,
may have facets that need to be associated with ports or pins
(or some such physically distinct bit of hardware). Other
peripheral schemes, like the one for fans, need to be asso-
ciated with fan tachometer circuits (for fan speed readings)
and other bits of hardware (like pulse width modulator
circuits used for fan speed control). In contrast to power
supplies, fans associate neither with operational/host ports
nor operational/host pins.

[0085] The present invention supports support such con-
text sensitive associations (scheme-to-scheme dependency/
delegation relationships) via the block of bits (described
above) in order to keep the context sensitive details consis-

Feb. 9, 2006

tent across the entire (system) schema. As described above,
this block of bits has an interpretation (i.e., a format) that can
vary by the specific scheme (e.g., Power Supply) in ques-
tion. The specific (prototype) scheme dictates that interface
facets. Thus, it dictates just what the block of bits interpre-
tation will be in this scheme context.

[0086] Unless the logic knows something about the cur-
rent scheme, the block of bits is utterly opaque. Much of the
code found in any embedded firmware/software image will
manipulate any such block of bits as just another collection
of bits. Only the scheme-specific logic, like the facet imple-
mentation logic, embeds any scheme specific knowledge.
Only scheme-specific logic can correctly interpret the block
of bits. This scheme specific information/knowledge hiding
is important. It forces strong modularity/encapsulation
boundaries around each (prototype) scheme within a (pro-
totype) schema.

[0087] The block-of-bits values may also vary by scheme.
This sort of scheme-specific value is called a reflection
value. It reflects and/or represents information common to
all instances of given scheme. A portion of every block of
bits may be required to be consistent for all sub-schemes of
some enclosing, more general scheme. This sort of recur-
sively-nested, sub-scheme (prototype hierarchy) is consid-
ered a part of the present invention. Most often, the block of
bits values vary for each specific scheme instance. These
simply reflect the particular property/attribute values that
best describe the scheme instance in question.

[0088] With reference again to the running power supply
example, many power supplies will use certain bits, e.g., to
identify which operational/host ports or pins they use. To
keep the example simple, and without any limitation on the
scope of the invention, we focus here on a scheme instance
for a Power Supply that communicates via operational/host
ASIC pins. Such pins carry what are often called general-
purpose input/output (GPIO) signals. The subordinate
scheme used for (logical) GPIO signals can describe both
the classic single-bit GPIO pin and cases where the logical
GPIO signal is delivered using multiple GPIO pins (as a
crude form of a bus). Such collections of GPIO pins can
manifest a so-called bit-banged bus. To keep this example
simple, the GPIO Bus Flag is set to false. In other words, the
example Power Supply (instance) will use a simple (logical)
GPIO signal. This makes all of the GPIO bus related block
of bits parameters moot (at least for this particular example
Power Supply). All the same, these GPIO bus related
parameters are shown (in Table 2 below) to illustrate one
particular scheme that has resulted from the application of
the present invention.

TABLE 2

Logical Description of General Purpose IO (GPIO) Signal #4
(Block of bits only)

Section/Bit

Offset # bits Purpose Sample Value
1 16 Packed Bit Field 0Ox0060

15:8 8 Reserved (presently unused) 0x00

7:0 8 (Logical) GPIO Pin Number 0x60

2 16 Dedicated Bit Field 0x0060

15:0 16 GPIO Signal Mask 0x0060

3 32 Packed Bit Field 0x053205FF



